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Abstract —The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scienti c
research. We present a new method for performing query-driven visualization and analysis on AMR data, with speci c emph asis
on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties
of AMR grids that challenge many existing visualization techniques. Further, we present the rst implementation of que ry-driven
visualization on the GPU that uses a GPU-based indexing structure to both answer queries and ef ciently utilize GPU memory. We
apply our method to two different science domains to demonstrate its broad applicability.
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1 INTRODUCTION

Computational simulation has become an essential and powerful tdakasets that are both large and highly complex [26].
impacting a diverse group of scienti ¢ disciplines such as engineer- We present a two-step method for compositing and synchronizing
ing, biology, and medicine. Detailed simulations that model timéAMR data from a series of timesteps. We rst generate a composite
dependent, continuous physical phenomena, along with analysis &ahplate from the AMR grid hierarchies of these timesteps; the com-
visualization tools that address the temporal aspects of these simpasite template preserves the nest level of grid cell re nement from
lations, are essential to generate new understanding and insight isésh grid hierarchy. We then synchronize each timestep's grid hier-
many domain-speci ¢ problems. Approaches for visualizing timearchy to the composite template. This approach enables our method
varying data are generally based on either temporally sequential,t@process queries on a common AMR grid hierarchy. Using this data
temporally concurrent analysis methods. In the former, renderirggs a&tructure, we move the work of query processing to the GPU to realize
rst generated from individual timesteps by using traditional visualthe bene t of greatly accelerated QDV analysis. On the GPU side, we
ization approaches (e.g. isosurface extraction or volume renderingfegrate our new method with a GPU-based query engine, called the
These renderings are then viewed sequentially as an animation. In ddim-Hash index [10].
trast, temporally concurrent visualization methods (i.e. multitemporal The main contributions of this work are the following.
visualizations) present the important features from multiple timesteps
in asingleimage. We develop a new framework for doing QDV processing and vi-

In scienti ¢ simulations, the immense size and sheer complexity ~ sualization of time-varying AMR data. The core of this method
of data generated from highly-detailed numerical methods has pop- is based upon a synchronization strategy that addresses the dis-
ularized the use of adaptive mesh re nement (AMR) strategies. In  parities in spatial re nement that exist between any series of
numerical simulations, AMR-based techniques adaptively re ne the timesteps in an AMR-based simulation.
domain space of a simulation, both spatially and temporally, into a hi- We demonstrate the rst GPU-based QDV approach that utilizes
erarchy of nested, sequentially re ned grids. Though these strategies a GPU-based indexing strategy to accelerate query processing,
are computationally ef cient and provide signi cant storage bene ts, ef ciently utilize GPU memory, and accelerate QDV methods.
the dynamic aspects of the grid hierarchies pose signi cant challenges
for visualization methods. Speci cally, each timestep in a simulation In the next section, we discuss work germane to our efforts. This is
contains a unique grid hierarchy, consisting of multiple levels of gri#ollowed in Section 3 by an overview of AMR grid fundamentals, our
cell re nement. When considering a xed spatial location in the comcomposite template construction and timestep synchronization pro-
putational domain at two or more timesteps, the disparity of grid celess, and an introduction to the Bin-Hash index. Finally, we present
re nement that occurs between the grid hierarchies at this locatide results of our method from both a qualitative and quantitative anal-
prevents the simultaneous evaluation of data necessary for many vi¢is perspective.
alization algorithms.

In this work, we address the challenges of using a query-drivén PREVIOUS WORK
visualization (QDV) approach to visualize time-varying AMR dataTo provide a new method for analyzing and visualizing time-varying
QDV methods allow users to process ad-hoc queries over large-scgd@ptive mesh re nement data, our work builds upon three separate
datasets and visualize the spatial regions where data satis es t8gls: AMR visualization, query-driven visualization (QDV), and
queries. QDV methods are well-suited for analyzing and visualizingme-dependent visualization methods.

2.1 Visualization of Adaptive Mesh Re nement Data
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Importantly, this adaptive re nement occurs not just spatially, butapidly identify records of interest [32, 33].
temporally as well. As the simulation evolves, a regridding algorithm Gosink et al. [9] extend the utility of QDV methods by using cor-
tests and re nes grid cells with a frequency directly related to theielation elds to explore variable interactions within the domain space
level of re nement. Thus, grid cells of ne re nement — indicating of query-regions. Their work focuses on characterizing amefro
regions of complex or important behavior — undergo testing for regridegions in combustion simulations.
ding more frequently than grid cells of comparatively coarser re ne- Bethel et al. apply QDV principles to network traf ¢ analysis [7].
ment. This adaptive spatial and temporal re ning of the domain spag&ey use compressed bitmap indices to visualize and characterize over
results in a hierarchy of nested, sequentially re ned grids that are com5 billion records of network connection data. Stockinger et al. [24]
putationally cheaper to construct and are less expensive to store thaxi@nd the QDV approach for traf ¢ analysis by presenting a family of
high-density uniform grid. new parallel algorithms that generate queryable two-dimensional con-
Though AMR was rst presented in 1984 [5], and then extended iditional histograms. These conditional histograms are used to detect
1989 [6], the challenges of mapping common visualization techniquasd characterize distributed scans.
to AMR's spatially dynamic grid structure were not addressed until ] ] o
much later. One of the earliest examples of AMR visualization was3 Multitemporal Visualization
given by Max [20] in his cell-sorting method for volume renderingThough researchers have proposed various methods to track time-
Norman et al. [21] convert AMR hierarchies into nite-element hexavarying features across multiple timesteps in sequential fashion (i.e.
hedral cells with cell centered data, thus enabling the use of standaffimations), less attention has been paid to the direct visualization of
visualization tools. 4D data. In direct visualization of 4D data, or multitemporal visualiza-
More recent work focuses upon operating directly on AMR dataion, important features from selected timesteps are conveyesiin a
Work by Ma [19] describes a parallel rendering strategy for AMRyle meaningful visualization. Projecting four-dimensional information
data and presents two contrasting visualization approaches. Webafeaningfully onto a two-dimensional image is dif cult to do without
al. [27,29] present software and hardware-accelerated metlaseésl b saturating the visualization with too much information. Finding ways
on cell projection that facilitate direct volume rendering of AMR datao extend traditional, three-dimensional visualization methods to four
In their work, they render an AMR hierarchy by starting with its coarsdimensions is one intuitive way to approach visualizing time-varying
est representation. The image is then re ned by subsequently intiata.
grating the results obtained from renderings of ner grids. Weber et Hansen etal.[12,13] use 3D scalar elds as elevation maps in 4D. In
al. [28] also present crack-free isosurface extraction methodsMiB&t  these works, 4D lighting, shading, and plane-tracing (i.e. 4D ray trac-
data. Park et al. [23] present a hierarchical multi-resolution splattingg) are used to visualize higher dimensional data. Bajaj et al. [2] ex-
technique for AMR data that utilizes kd-trees and octrees. Their nowehd object splatting techniques to present a generalized hyper-volume
approach provides interactive performance for modest sized data. splatting approach. Their method presents a multi-resolution algo-
Kahler and Hege [14] present a hardware-accelerated volumigam for providing insightful visualizations of scalar elds in any di-
rendering approach to visualize AMR data. Their work, based on 3Rension; the focus of their work, however, is retplicit temporal
textures, directly utilizes the hierarchical grid structure of the AMReature tracking. Bhaniramka et al. [8] extend and generalize march-
data to rapidly render high-resolution datasets — including AMR daitag methods to higher dimensions, speci cally generating 4D isosur-
consisting of over nine levels of re nement.aKler et al. also present faces that can be sliced to enable the study of time-evolving features.
a novel strategy for remotely visualizing AMR data at intermediat@/oodring et al. [31] also extend slicing techniques for the direct ren-
time steps [15]. Their method utilizes so-called “keyframe” timesteering of 4D space-time volumes (as apposed to the 4D isosurfaces
to generate intermediate grid hierarchies. Data for these grid structugesierated by Bhaniramka's work). Their hyper-projection method dis
is then acquired through interpolation strategies (via Hermite or lineplays unique spatiotemporal features. Woodring and Shen [30]irese
methods) by using the existing data in the keyframe timesteps. a way to directly volume render time-varying data in a single mul-
Kahler et al. have more recently extended their earlier work bitemporal image. In their work, they orthographically project four-
presenting a GPU-assisted raycasting strategy for accelerating thedumensional data (i.e. volume data accumulated over time) onto a three
sualization of AMR data [16]. This work utilizes a kd-tree, resident odimensional image plane. They use traditional rendering methods over
the GPU, to provide a view-consistent ordering of data, and acceléte image plane, using opacity values that are spatially and temporally
ate the task of volume rendering. They contrast their method's resuigsed, to realize multitemporal images.
with a hardware accelerated slice-based volume rendering approach.
Their method generates superior images to the slice-based appro&efiending AMR and QDV Work

with no observable artifacts. To date, no techniques exist that facilitate the rendering of time-
. L varying AMR data in a multitemporal fashion. We address this impor-
2.2 Query-Driven Visualization tant issue in this work by combining GPU-based QDV methods with

Query-Driven Visualization (QDV) is an important and effective way hew approach for temporally synchronizing the time-varying data
to combine database and visualization technologies. QDV strategien a series of AMR timesteps. The results of our method allow for
are based on the observation that smaller subsets of data are usiifyjnteractive visualization of multivariate, spatiotemporal AMR data.
the genesis of insight or breakthroughs to new trends [3, 11]. In QDV¥e also extend previous QDV work in two aspects: we presentthe rst
users begin analysis by forming de nitions for data that are “impo@pplication of QDV techniques on AMR data, and we also present the
tant” to them. This characterization consists of constructing rangét GPU-based QDV approach that utilizes a GPU-based indexing
constraints for variables of interest. As an example, a user analyzingteategy to accelerate query processing, ef ciently utilize GPU mem-
combustion dataset may set constraints over speci ¢ variables such@®, and accelerate QDV methods.
(1100< temperature< 1800) AND (pressure< 780). QDV methods
use these range constraints to lter data records passed to visualization METHOD
and analysis software. This query Itration process focuses visualizQuery-driven analysis and multitemporal visualization of AMR data
tion and analytical resources exclusively on data that is meaningfuldee hindered by the dynamic temporal and spatial properties of AMR-
the user. based simulations. Speci cally, in AMR-based simulations, any xed
Stockinger et al. [25] were rst to present the notion of couplingpatial location in the domain can be covered by a grid cell of vary-
visualization with high performance query technology. Their workng re nement based upon the timestep analyzed. For query-driven
demonstrates that the computational complexity of visualization preisualization (QDV), this disparity in re nement between timesteps
cessing can be constrained to the number of items returned by a quprgvents the evaluation of multitemporal queries. Similarly, coher-
Their approach introduces a software system (DEX) that utilizeseat multitemporal renderings of AMR data from any visualization
highly ef cient indexing and query infrastructure, called FastBit, t@approach — extracting and simultaneously rendering isosurfaces from



multiple timesteps, or volume rendering with time-dependent transfee covered by som&1., as well asGo,c. With each re nement level

functions — also require addressing these temporal-based disparitiegadsessing a different set of data for the speci c region, a visualizatio

spatial re nement. method can take one of several approaches to utilize this data [18]:
Our new method addresses these challenges by synchronizing all

AMR grid hierarchies (from any subset of timesteps) with a composite  Treat all the grids (and their values) independently;

template. This synchronization process facilitates query-driven analy- Combine the data together in some way that is physically mean-

sis and multitemporal visualization in two aspects: temporally sequen- ingful and use the result for visualization; or

tial visualizations, where features from these timesteps are analyzed in  Use the data value(s) from the nest grid available and ignore

sequential frames as a movie, and temporally concurrent visualizations - data value(s) from coarser grids.

where a single multitemporal image conveys the important features

from all synchronized timesteps. In our method we adopt the last approach to acquire data values

We base our method on the AMR grid hierarchy outlined by Bergéfom AMR grid hierarchies; by using the nest resolution source avail-
and Colella [5,6]. We outline this hierarchy and its properties next. Fgple at any given location in the domain, we are sure to be using the
?10[f195d%t]ai|5 regarding AMR-based simulations, we refer the readfipre accurate and detailed information produced by the computational
o(1,5,6]. model.

3.1 AMR Grid Structure 3.1.1 Advancing Grid Cells in Time

Adaptive mesh re nement (AMR) implementations are traditionallps the simulation advances beyohd 0, a time-stepping algorithm
based on a nested hierarchy of successively re ned axis-aligngsl gr evaluates and regrids grid cells according to their level of re nement:
These grids are identi ed using the notatiGi Wher_el indicates the G- n are evaluated and regridded independenty3pfi.or m etc.
level of cell re nement for the grid, andd is the unique number for The frequency of these regriddings is directed by the re nement ratio

the grid given this re nement level [6]. We use the notat®n. k+n  such that de nes both the spati@ndtemporal re nement properties
to refer to a continuous set of grids at a single level of re nemenghat guide AMR-based simulations:

The increase in resolution from one grid re nement level to the next
is speci ed by a re nement ratio "r", which indicates how many grid D+l= }Dtl @)
cells of levell + 1 t into a single grid cell of levell (considering a
single axis-direction). . . . .
9 ) The time-stepping algorithm can be thought of as a recursive approach

Dxtl= %Dxl; Dy*l= %Dyl DZt1= %Dzl (1) that advances grids cells in time according to their level of re ne-
nt [1]. To advance levé| Ig | Imax the following steps are

Note that th i hange b ive g
ote that the re nement ratio may change between successive Igé formed:

levels. For example, the re nement ratio may be two between léve

andl+ 1, and four between levels- 1 andl+ 2. Though notrequired, 1. Advance grid cells at levélin time by one timestep. Calculate

re nement ratios are usually based on powers of two [4]. This conven  data values for these grid cells at this new time. Additionally, if

tion seems to re ect a good balance between coding simplicity andan |+ 1 |, assess all grid cells at this new time for the need of

effective realization of the bene ts of re nement. additional re nement (through the convergence criteria). For all
An additional property required of all grids is the notiongwbper cells that require further re nement, generate new grid cells at

nesting This nesting property is strictly de ned in the sense that grid  re nement levell + 1 in these cell locations.

cells of re nement level are prohibited from abutting any grid cell 2 Advance level + 1 grid cellsr times using Equation 2 to deter-

other those of re nement levéJ | + 1, orl 1. A simple 2D example mine the length of the timestep. At each of thtémesteps, calcu-
demonstrating an AMR hierarchy is illustrated in Figure 1. late data values for these grid cells. Additionally, 2  Imax

At the start of a simulatiort, = 0, the initial AMR grid hierarchy assess all grid cells for the need of additional re nement (through
contains a single grid composed of cells of the coarsest level of re-  the convergence criteria). For all cells that require further re ne-

hierarchy are re ned based upon a convergence/stability criteria Spec  cg|| |ocations.
i ed by the user. This re nement criteria, utilized both at the startand 3 Synchronize data from grid cells at level 1 back to level.
during the simulation process, may be based on the behavior of ow
features (e.g. vorticity or density gradients) [1], or on factors that ar The synchronization of data in the last step involves several steps
more complex [6]. This initial re nement process is iterative — testinghat effectively serve to propagate accuracy back to the coarsezde
and re ning are repeated until for all grid cells at all levels of re ne-grid levels. In this way the accuracy of the data at coarser levels of
ment either the convergence criteria is met, or the nest allowed level nement is corrected/adjusted with ner resolution data.
of re nement is reached (maximum re nement levels are user set).

Given this re nement procedure, note that regions can be coverd® Composition and Synchronization of AMR Grids

by multiple grids: e.g. a spatial location covered By, will also  To perform QDV on a series AMR timesteps, e.g. timestep 0 and
timestepn, every spatial grid cell associated with a data record at
timestep 0 must have a corresponding spatial grid cell of equivalent

| G re nement at timestem. We achieve this consistency of re nement
ﬂ——Gl,O €00 by rst constructing a composite template from the series of AMR
| timestep's grid hierarchies. We then use this template to direct the
* synchronization of these grid hierarchies for purposes of QDV.
Gl 1 (|32,0

3.2.1 Composite Template Construction

_¢ £ The composite template construction process consists of a re nement-
level ordered compositing of AMR grid cells. From the AMR grid

hierarchies contained in a series of timesteps, the construction process

begins by adding to the composite template only those grid cells whose

re nement level is equal thnax Next, the construction processn-

Fig. 1: This image depicts an AMR grid hierarchy consisting of four grids and threesleveditionally adds to the template those grid cells whose re nement level

of re nement: Go, G100 1, andGyo. Grid cells are re ned with a re nement ratio o£2  is equal tdnax 1. With conditional additions, the process adds a grid

and are properly nested: grid cells at level 2 do not abut grid cells at level 0. cell to the templatenly if a grid cell of ner re nement is not already




Step 1: Step 2: Step 3 (final step):
Adding Level 2 Grid Cells Adding Level 1 Grid Cells Adding Level 0 Grid Cells
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Fig. 2: This gure illustrates the sequential process of compositing the AMR Igiedarchies of two selected timesteps. The process begins by lling the ciapersplate with all
grid cells, from both timesteps, of the nest level of re nement. In each subseqzess, our procedure adds grid cells of the next level of lesser re nementtentipdate - conditioned
on the basis that a more nely re ned grid cell has not already been placed at thabposiinally, we add grid cells of the coarsest level of re nement to the template.

Timestep 0 Timestep n

resident in the template at this given location. This strategy continugscedures. The difference between our work and previous work is
until the process conditionally adds grid cells of re nement level equéthat we query and render adaptively re ned spatiotemporal data. This

to lg. Figure 2 illustrates this construction process. difference requires, in addition to the use of the composite template
This re nement-level ordered compositing guarantees two fundand synchronized grid hierarchies (Section 3.2), mapping query re-
mental properties in the nal composite template: sults to direct the rendering of grid cells during the rendering stage.

L We discuss Bin-Hash index building, searching, and rendering next.
The template maintains the nest level of re nement from each

timestep utilized in its construction — the template thus preserv8s3.1 Bin-Hash Index Construction

Ephe high dellpy data clreated bydthe nubmerlc?l S|mul?t!on. he di he strategy of the Bin-Hash method is based upon the observation

; e composn%tenﬂp ate provi is a basis hor resolving the dif5, query performance can be accelerated through the utilization of
erences in gri dcg (rjt_eﬁnement 'td at ﬁX'St when alglwlan p%'.nﬁt Multi-resolution information. Supporting this approach requires two
space Is covere yS ! e_ren}lgrl celire .gemtlelnft eVels atA'\'Asrrevels of informational representation for the AMR data records: full-
ent paints in time. Speci cally, every grid cell from any esolution (the 32-bit base data) and low-resolution information (8-bit
grid hierarchy used to construct the composite template can Gcoded data).
mapt)pgd t_g a ﬁ]”dfce” ct>f equwalentt re rtlﬁment, or .";‘ %roupl 9" The Bin-hash index construction algorithm takes as input the full-
nested grid cells of greater re nement, in the composite templatg,q | tion AMR data from a single timestep and generates both an

3.2.2  Grid Synchronization encoo_ledand sp_atially compacteql version_of t_his input. The index con-

struction algorithm performs this operation in two stages. In the rst

The composite template provides the common grid hierarchy ”ec$§age, it utilizes a binning strategy to generate a binned ( .e. encoded)

sary for performing query-driven analysis and multitemporal visuafjgjon of the data. In the second stage it utilizes a combination of

ization of AMR data. The variable attributes (efressuredensity  yata partitioning with a technique referred to as spatial hashing [17]
etc.) contained in each timestep's grid hierarchy must now be syiycompactly represent the full-resolution data contained in each bin
chronized with this template. The second fundamental property of t Reviously created by the rst stage's binning procedure.

composite template formulates this synchronization process. The rst stage in the index construction process begins by ex-

T_hose grid cells (from all grid hierarchies used to generate the COkining and binning — independently — the data from each selected
posite template) that map to regions of greater re nement in the conw;n
VA?

. . o estep's hierarchy. For example, given a set of bin boundaries on a
posite template are synchronized through a regridding process. T, iableA, such agbg; by; :::: bn), each bin is de ned to be the inter-

regridding process iteratively divides the grid cell in question into g (b A<by),(by A< by),andsoon. Bin-Hash binning always

nested group of grid cells of increased re nement. This re nementjizes 256 bins, where each bin contains approximately the same
continues iteratively until grid cells are identical in re nement and hlhumber of records. The encoded version of the dataset. referesd to
erarchical ordering to the group of nested grid cells in the composjig, _resoution data, is created by replacing each 32-bit full-resolution
template. To complete the synchronization, we propagate the cell c@@z, vajue with its associated 8-bit bin number (0-255).

tered value of the original grid cell to the centers of the newly created 11,4 second stage in the process of index construction requires the

grid cells. Figure 3 illustrates this process. With each timestep's gg?clrtitioning and spatial compaction of the original full-resolution data.
hierarchy synchronized, multitemporal query-driven visualization

AMR data is now possible.

3.3 Query-Driven Visualization of Temporal AMR Data

The goal of query-driven analysis is to provide scientists with interac-
tive and resource-ef cient methods for visually exploring large mul-
tidimensional data. To meet these needs, it is important to process
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user's queries, and render the results generated from these gasries Composite
; . Template
fast as possible. We meet these needs by employing a GPU-based
query indexing structure, called the Bin-Hash index [10]. By utilizing _Initial First Level of Second Level of
Grid Hierarchy Synchronization Synchronization

a GPU-based query engine, we can implement the entire QDV pro-
cess on the GPU and accelerate QDV performance as a whole with +
the GPU's parallel processing power. In our implementation, the CPU
serves as a host to the GPU, only streaming the minimal data neces- [ :> HH ':>
sary to perform full-resolution queries (Section 3.3.2). All queries ar i,
evaluated (and rendered) on the GPU by executing kernels written in ] |
NVIDIAs data-parallel programming language CUDA [22]. QDV in (Pre_g;?fﬁﬁgrﬁ’ifation) (Syrﬁgﬁfgﬁ?zgd)
literature typically evaluates scalar data. However, the Bin-Hash index
can also evaluate \_/eCtor data, as well as evaluate an arbitrary nU”H?&rs: This gure depicts the sequential process of synchronizing the grid hierarchy of
of timesteps or variables. a given timestep with a composite template. At each level of synchronizagiihcells
The integration of the Bin-Hash index into QDV is similar to previ<conditionally re ne themselves by one additional level according to whetheotthey are
ous integrations that utilized a CPU-based index [26]. Both strategigschronized with the composite template. In this example, synchronizatzmmplete
use index building, index searching, record processing, and riegderfor the grid hierarchy in the second level of synchronization.
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(@) coordinates for dynamically-sized hexahedral cells in three-space. F
uniform datasets, bit-vectors are rendered by mapping each record'
unique index to a three-space position (through modular indexing),

(b) and rendering a constant sized hexahedral cell at this location. How-
| i ever, these rendering techniques won't work on query solutions gen-
(c) erated from AMR data. AMR grids have dynamic cell sizes, and with

Fig. 4: These images depict the three transfer functions we employ in our work. In (gfbitrary cell counts per dimension, modular indexing will not work.
and (b) the colors correspond to levels of AMR grid re nement for the respectiverarg ~ OUr approach to solving this problem is to generate a single record-
Bubble and Hurricane datasets: green colors indicate grid cells of nest re nement, aHd list for each composite template that stores the spatial location and
gray colors indicate grid cells of coarsest re nement. In (c) the colors are used to comndewel of re nement of each grid cell in the template's hierarchy. The
summary statistic information in multitemporal visualizations: bluecindicate regions ordering of this list coincides with the ordering of the records being
Whgre few queries have selgcted a cell during QDV analysis, and yellow colors mdic%}ueried by the Bin-Hash method. Thus, the rendering stage in our im-
regions where the most queries have selected the cell. plementation rst accesses the bit-vector solution of the user's query.
To perform this, records are rst partitioned according to their biffO" €ach record that passes the query, the algorithm uses the secord
numbers. Next, these subsets of data are spatially compacted throlfig§x value to lookup the spatial location and level of re nement of
a technique called perfect spatial hashing [17]. Perfect spatiat halppt record. The appropriately sized hexahedral cell parameters ar
ing takes all the full-resolution data associated with the records of 2" Written to a buffer in the GPU's global memory. The render-
given bin, and stores it separately as two small tables: a hash tablefﬁflgor'thm additionally uses the cell's re nement level, and a color
an offset table. This operation is performed for all 256 bins. Onc¢89 up table, to determine the color to render each grid cell; grid cel_ls
the second stage is completed, the total full-resolution dataset is Pl common re nement level share a common color. The memory is
represented as 256 pairs of hash and offset tables. The total sto mapped as a Vertex Buffer Object and rendered to the screen.
overhead for the indices is approximately 1.5 - 2.0 times the size of
the original AMR data. This partitioning and spatial hashing of th VISUALIZATION APPLICATIONS AND ANALYSIS
data is essential to the search process as the next section details. We apply our new query-driven visualization (QDV) method to two
) ) datasets. We demonstrate our method's ability to generate multitem-
3.3.2 Bin-Hash Index Searching poral visualizations from time-varying AMR data, by visualizing sum-
Before query processing begins, low-resolution (i.e. encoded) damary statistic information generated from a single query that has been
for all selected timesteps is rst uploaded onto the GPU. Resolvirgyaluated over multiple timesteps. In our analysis the term, “synchro-
a query then consists of two stages, both performed on the GPU.nized AMR data”, refers to AMR data that has been synchronized with
the rst stage the GPU-resident low-resolution data is evaluated inaacomposite template, “non-synchronized AMR data” refers to AMR
low-resolution query. In certain cases this low-resolution informatioiata that hasot been synchronized with a composite template.
is insuf cient and full-resolution data must be utilized. In the sec- All tests were performed on a desktop machine running the Win-
ond stage, up to two pairs of hash and offset tables (per variable) dmvs XP operating system with SP2. All GPU kernels were run utiliz-
sent to the GPU to assist in evaluating a full-resolution query. The rieg NVIDIAs CUDA software: drivers version 1.6.2, SDK versioril
sult of this two-stage index searching approach is a single bit-vectoard toolkit version 1.1. We additionally used the following hardware:
a boolean array, with one entry per AMR data record, that indicates
which records (grid cells) have passed and which have failed the.query  Motherboard EVGA 680i - 1066MHz FSB; 16X PCI-Express
Inthe rst stage of the index searching algorithm we rst determine
the boundaries of the query. Consider an example. Given a user's Processorintel QX6700 - 2.66GHz; 2 x 128KB L1; 2 x 4MB L2
range constraints on a given variable and timestep, sucpr re .
> 1%0), we determine tr?e bin(s) (Section 3.3.1) thgt thggeec?:ﬁstraints Co-processor (Graphics CardNVIDIA 8800GTX - 768MB GDDR3
fall into. In this example, assume that the value “100” for pressure
is contained in“the value rf'irlge captured by bin 17. Bin 17 is th N Dataset 1- Argon Bubble with Shock Wave
de ned to be a “boundary bin” for the query. Next, the search preces
evaluates a low-resolution query by accessing the low-resolution datais dataset models a simulated shock wave passing through an argon
on the GPU. These low-resolution data records are then characteriRgble surrounded by atmospheric gases (i.e. air). One of the impor-
as passing (the given record's valuegi®ater thanl7), failing (the tant characteristics of this dataset is the dispersion of the argon gas
given record's value ifess thanl7), or in need of full-resolution data over time. There are over 1000 simulated timesteps in this dataset
(the given record's value isqualto 17). where the physical property we analyze is gas density; i.e. mass of gas
In the second stage of the index searching algorithm, those lo@gr unit volume (ranging in values from 1.3 to 5.1). We analyze 18
resolution records that were characterized in stage one as needR timesteps from these 1000: the grid hierarchies associated with
full-resolution data, now undergo a full-resolution query. In thi§imes 100, 150,::, and 950. Each timestep's (synchronized) hierarchy
full-resolution query, the hash and offset tables corresponding to tBensists of three re nement levels and a total of 14 million cells.
boundary bin(s) of the query are streamed to the GPU from the CPU. i o
This data transfer constitutes a trivial impact on PCI-E bandwidth [1dYlultitemporal Visualization
as a maximum otfﬁ the size of the original dataset is transfered ovefhe left column of images in Figures 5(a) through 5(c) depict two-
the bus (at most two boundary bins may exist per variable in a quatynensional slices of selected AMR grid hierarchies; these are the
out of the possible 256 bins). Each record whose low-resolution valged hierarchies we use to construct our composite template. The right
corresponds to a boundary bin utilizes the hash and offset tablescofumn of images shows cells from these hierarchies that have been
this bin, via a perfect spatial hash, to access its original full-resolutisandered through a process of query-driven analysis; all reddgid
value. Once this data has been retrieved, the searching algorithm petls in images from this column are selected by querying for density
forms a full-resolution query and all records are classi ed as passinglues:(density 1:5). In both columns, colors depict levels of grid
or failing the query. In the case of a query that constrains more themnement and are based on the transfer function shown in Figuje 4(a
one variable, the bit-vector solutions from each single variable are logpeci cally, gray regions indicate grid cells of coarsest re nement in
ically combined to form the multi-dimensional query's nal solution. the Argon Bubble simulation; and green regions indicate areas of nest
. . re nement. Compositing the AMR grids from the 18 timesteps results
3.3.3 Mapping AMR-Based Bit-Vectors to Three-Space in the composite template shown in Figure 5(d).
Our rendering algorithm takes the bit-vector solution created in the in- We use this composite template to generate a multitemporal visu-
dex search stage, and generates (for cells passing the queryatelede alization based on summary statistic information accumulated from



(a) Timestep 100

Fig. 6: This multitemporal image depicts summary statistic information gathered from
(b) Timestep 200 queries processed over 18 select timesteps from the Argon Bubble dataset. rimaidpés i

yellow regions indicate areas where high gas density predominantly resides@cerutse

of the Argon Bubble simulation. Light blue regions show areas whegesoiew timesteps

indicate the presence of high gas density; these regions denote wheresadigpersing.

We de ne “important” regions in this process — that is, regions where

coarsening shouldot take place — as areas where observed physical
(c) Timestep 900 properties vary greatly. Those regions where observed physiupd pr
erties donot vary are subjected to coarsening.

The results of this adaptive coarsening are a series of multi-
resolution, time-dependent datasets that follow the structural proper-
ties of an AMR grid hierarchy. Each timestep in the original source
data contains 25 million cells. After coarsening, each timestep con-
tains 5 levels of re nement and a total of 8.6 million cells. Thus the
criteria for adaptive coarsening results in a storage savings of about
65%, while still preserving the dataset's important features. We ap-
Fig. 5: This gure depicts images from select timesteps of the Argon Bubble dataset. iy our method for generating multitemporal visualizations to these
this dataset there are three grid hierarchy levels, shown in these images as colored datasets; we generate a composite template from all timesteps, and
(coarsest cell re nement), blue (medium cell re nement), and green (nest cell re nethen synchronize the timesteps with this template. One of the im-
ment). The left column of images, (&) - (c), show two-dimensional slices thréwghVMR  portant characteristics in this dataset is the low-pressure regions that
grid hierarchies of these select timesteps. The image in gure (d) depicts theosiienp depict the location of the hurricane event. With our new multitemporal

template we construct from all (18) timesteps we use in our analysis. THeabimn of i\ 5ji7 ation method, we effectively characterize these regions. In this
images show the cells selected from query-analysis for the individual timegtehgse i I ies f inP | it
images regions where gas density is greater than 1.5 are rendered. secuon, all quernies for pressure are in Fascal units

(d) Composite template

queries that select regions of high gas density. We construct this Multitemporal Visualization

sualization by rst generating an integer-based solution array. Thiigure 8 depicts select non-synchronized (top row) and synchmnize
array contains one entry for each grid cell in the composite templgtsottom row) timesteps from the hurricane dataset. The top row il-
that tracks how many times its respective grid cell passes a sefligsirates the individual grid hierarchies generated from our adaptive
of queries. We then query the synchronized AMR data of the rsfoarsening approach; the bottom row depicts the same grid hierar-
timestep (Timestep 100) for grid cells whef@ensity 1:5) — this chies after synchronization with a composite template. The cells
query delineates regions of higher gas density. Cells from this timesiedered in these images (both top and bottom rows) have passed a
that have passed the query increment the value corresponding to theilible-constraint query for pressure that selects cells from a given
position in the solution array by one. We apply ts&mequery to timestep that either contain low pressure OR high presgur200

the next timestep's synchronized AMR data (Timestep 150); resultsgfessure 20) OR (500 pressure 1000. Note that we also show,
this query too are added to the array. We repeat this process for alltd&ssist in interpreting the data in Figure 8's images, the regions of
timesteps. The nal solution array contains summary statistic data theblated low pressure (Figure 7(a)) and isolated high pressure (Fig-
reveals how higher-levels of gas density disperse spatially over timeyre 7(b)) .

We visualize these summary statistics in Figure 6. This gure is col- The regions in Figure 8, as well as those in Figure 7(a) and Fig-
ored according to the transfer function shown in Figure 4(c). Cells thate 7(b), are colored according to the transfer function in Figure 4(b)
contain low gas density over the entire length of the simulation (i.e. m@een regions indicate grid cells of nest re nement, and gray regions
query from any timestep indicated the cell passed our query for higidicate grid cells of coarsest re nement. In both rows of images in
density) are shown in blue; in contrast, cells that contain higher gRgyure 8 observe that the low pressure regions, which characterize the
density for theentire length of the simulation (i.e. every query overimportant hurricane event, are preserved at the nest level of eell r
the timesteps indicated the cell passed our query for density) are indiement. In contrast, regions of high pressure, which characterize
cated in yellow. From this multitemporal visualization we can see howteas where little observable variation in physical properties occur, are
higher-levels of gas density are distributed over space with respecpiedominately coarsened by our adaptive coarsening method. In the
time. This type of visualization allows scientists to assess how effdgettom row of images in Figure 8, which show results for querying
tive various types of shock-waves are at dispersing chemical gasestimesteps of composited and synchronized AMR grids, the path of the

4.2 Dataset 2: Hurricane Isabel = |
This dataset was generated by a climate simulation that models a hurri ) T '7'-'.__7,

cane event over 48 timesteps. This dataset represents a common cla
of uniform resolution data consisting of a uniform grid of hexahedral
cells (500x500x100). Such time dependent datasets can be costly
store and analyze. To ameliorate these costs, we recast this unifor
data in a multi-resolution framework to ease storage and visualizatio
demands. We recast the data by adaptively coarsening the attene
grid — in regions where detail isot required — into a multi-resolution Fig. 7: This gure depicts grid cells in the Hurricane dataset that contain relatively low (a)
grid framework that abides by the properties of an AMR hierarchgnd high pressure (b).

v

R%\) Cells selected from a query (b) Cells selected from a query se-
selecting regions of low pressure: lecting regions of high pressure:
200 pressure 20) (500 pressure 1000



(a) Timestep 10 (b) Timestep 25 (c) Timestep 35 (d) Timestep 45

Fig. 8: This series of images, selected from 48 timesteps, compares query results from noniggdhftop row), and sychronized (bottom row) AMR grids of the Hurricane Isabel
dataset. The query used on each timestep consists of two parts; we query fos fdam pressur¢ 200 pressure 20) OR regions of high pressu(600 pressure 1000. To
assist in interpreting these images, the individual regions generated froeridlxeand high pressure queries are shown in Figures 7(a) and 7(b).

hurricane is preserved at the nest level of re nement in the coritpos characteristics important to QDV. We analyze QDV performance with
template as indicated by the green path. respect to increasingly complex queries (i.e. the number of timesteps
We utilize this composite template to generate a multitemporal vévaluated by the query), and QDV performance with respect to de-
sualization based on summary statistics from queries — processed @reasingly selective queries (i.e. the percentage of cells that passed th
each of the 48 timesteps — that select regions of low pressure. Thigery). The former query characteristic impacts the time it takes to
process is analogous to the one performed in Section 4.1 for the firocess a query; the more timesteps in a query, the more time it takes
gon Bubble dataset. We begin by querying the synchronized AMR process the query. The latter impacts the time it takes to render the
data of the rst timestep (Timestep 1) for all cells with pressure vakesults of the query; queries with low selectivity select more cells that
ues in the range of 200 pressure 20) — note that this query must be processed and rendered to the screen.
characterizes regions of hurricane activity in the simulation. The re- We begin our tests by querying a single timestep with queries that
sults of this query are stored in an array. This process is repeatedgelect 1%, 10%, and 20% of the cells as hits. As mentioned, we record
all 48 timesteps; each query indicating in the array, those cells tHat each of these queries the time it takes to answer a query, render the
have passed its query. The nal results of the array contain summassult of the query, as well as the total number queries we can process
statistics that indicate how the hurricane event, as characterized by and render in a single second. We then consider an additional timestep
gueries for low-pressure, evolves spatiotemporally. in our queries, and repeat the same sequence of tests. We repeat this
We visualize these summary statistics in Figure 9. This gure is coprocess until a total of ve timesteps are simultaneously evaluated by
ored according to the transfer function shown in Figure 4(c). From thédl queries. The results of these tests are shown in Table 1.
multitemporal visualization we can see how cells that predominantly The values shown in Table 1 indicate that performance for our QDV
contain low pressure over time — as indicated by regions of yellowmethod is predominantly determined by the selectivity and not the
de ne the path of the hurricane. complexity of a given query. Thus, users who analyze numerous var
ables or numerous timesteps in their queries, so long as the selectivity
of these queries is high, will experience excellent performance with
There are two factors that contribute to the response time of a Q@vr method. Users whose queries are not very selective (i.e. select
application: the time it takes to process a query (Section 3.3.2), diatge number of cells to render), even if they are only analyzing one
the time it takes to render the query's solution (Section 3.3.3). To thariable, will experience slower performance. Note that even at the
user, these two times appear as a uni ed sum that we de ne as “quelgwest level of performance (ve timesteps at 20% selectivity in Ta-
driven response time”. We analyze the performance of our work e 1), our method is still operating above performance levels consid-
presenting our query-driven response times in terms of the numbereséd interactive (typically, any implementation that functions in excess
queries we can process and render in a single second. We additionafl$ Hz is considered interactive), and is providing excellent perfor-
show this metric in terms of its two principle components: the time ihance for QDV functionality.
takes to answer a query and the time to render the query's results.
Each timestep from the coarsened, synchronized Hurricane datasetCONCLUSION AND FUTURE WORK
(for the variablepressurg consists of 8.6 million cells. We evalu- We have presented a new method for performing query-drivenlvisua
ate our method's performance by independently analyzing two quemation of time-varying AMR data. With our new analysis and visual-
ization approach, we are able to construct multitemporal visualizations
that convey in a single image how queries characterizing important in-
teractions or properties evolve over time. We have demonstrated the
extensible utility of our method by applying it to two different science

Performance

Timesteps Queried 1% selectivity 10% selectivity 20% selectivit,
(ms /ms/qps) (ms/ms/qps) (ms/ms/qps)
1 (8.6 million cells) 1.9/40.1/23.3 1.9/59.1/16.1 1.9/74.0/13.p
2 (17.2 million cells) | 3.1/41.7/22.0 4.0/59.4/155 4.0/74.8/12.p
3(25.8 millioncells) | 5.0/41.9/20.9 5.86/60.1/14.8 6.0/75.9/12p
4 (34.4 million cells) | 7.0/42.0/19.9 7.0/61.8/14.3 8.0/76.9/11.p
5 (43 million cells) 8.1/43.8/18.9 10.4/60.5/14.0 12.6/77.2/110

Table 1: This table depicts, for an increasing number of timesteps and records queried,
performance times taken during the analysis of the Hurricane dataset (Section 42). Th
results are given according to three ranges for query selectivity: queries where 1%, 10%,
and 20% of the available records are selected by the query. The rstvalue in amyagils
umn and row entry is the time to answer the query, the second number isvthtrender
Fig. 9: This multitemporal image depicts summary statistic information gathered frothe query's solution; both of these values are given in milliseconds. il number is
queries processed over 48 timesteps from the Hurricane dataset. In this image, yelosvtotal number of queries processed and rendered per second; this measurement depicts
regions indicate where low pressure predominantly exists across the 4&fsies the total performance experienced by the end user and incapsulates the two pimésus
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